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The Five Questions

1. A Road to Philosophy of Mathematics

l became interested in philosophy and mathematics at more or less the same time, rather
late in high school; and my interest in the former certainly influenced my attitude towards
the latter, leading me to ask what mathematics is really about at a fairly early stage. I don ’t
really remember how it was that I got interested in either subject. A very good math teacher
came to my school when I was in 9th grade and I got caught up in his course on solid geometry;
but he soon left and math then lost its luster again in the hands of teachers who neither liked
nor understood it. Calculus wasn’t taught in high school in those days, or at least not in mine:
besides geometry we learned some algebra (how to solve some equations) and trigonometry
(with, of course, very little proved). I doubt that even the word “philosophy” passed the lips
of any of my teachers. My mother, who worked for a publishing house, brought home for me
copies of, among other works, the Jowett translations of Plato’s Dialogues, Will Durant’s Story
of Philosophy and Courant and Robbins’ What Is Mathematics?; but I can’t remember why she
did that: She wasn’t at all intellectual and, as far as I recall, my interests at the time were
mostly confined to sports and girls—in some order. Maybe she just thought it was time for
me to develop new interests.

After high school, I went in 1948 to Lehigh University, then at least primarily an engi-
neering school, on an athletic scholarship (which I was lucky to get: I wasn’t that good an
athlete and there was a glut of more talented GI’s returning to school). There I had the good
fortune in my first year to have an introduction to philosophy course with Lewis White Beck.
He had just moved there from the University of Delaware and shortly thereafter moved on
to the University of Rochester, where he became one of the leading lights of American Kant
studies. My good luck was compounded when, in my second year, Adolph Grünbaum arrived
at Lehigh, fresh from graduate school at Yale, and stayed at least long enough for me to gradu-
ate, before moving to the University of Pittsburgh as Andrew Mellon Professor of Philosophy
of Science. Beyond his excellent course on the philosophy of science, in which I was exposed
to the main currents of thought on the subject at that time, he was both an important source
of encouragement and of enormous help to me in getting started as a scholar: He introduced
me to Theodore Hailperin, who taught me some logic (I can’t remember whether it was in
a regular course or in a special reading course) and to another young member of the math-
ematics department, Samuel Goldberg, who met with me every week to study, eventually,
Hardy’s Pure Mathematics—a wonderful, although humbling, experience. I should also mention
that Adolph, along with other members of the Philosophy department at Lehigh then, were
extraordinarily supportive and helpful in enabling me to transfer from an athletic scholarship
to an academic one: With an injury in the spring of my sophomore year and, probably more
importantly, a radical change in my interests, going out every afternoon to get pounded had
lost a lot of its appeal.

Following Adolph’s example, if not his advice (I can’t remember), I went to Yale as a
graduate student in philosophy in 1952. In my first year, I took in sequence two semester-
long courses in set theory. In the first of them, Fredrick Fitch began to formally develop the
Gödel monograph The Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis
with the Axioms of Set Theory in his system of natural deduction. I can’t remember how far we
got; but given the fact that the details in that monograph already threaten to overwhelm the
ideas, the addition of formal deductions did little to lend light. Following that, John Myhill
gave a course in foundations of set theory in which he compared various axiomatizations—
ZF, The predicative second-order systems of von Neumann and Bernays/Gödel, Quine’s New
Foundations, etc. The course slightly swamped me and when, after I had (more or less) finished
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a difficult final exam, Myhill asked me to lend him a quarter to buy a beer, I almost strangled
him. (Incidentally, you got quite a big glass of beer for a quarter in those days.) John went
on leave the next year and never returned to Yale—a large-size loss for me. I had a Fullbright
fellowship in my third year to go to Amsterdam to study intuitionism with, I thought, Brouwer;
but he had retired by the time I arrived and my study of intuitionism was confined to some
lectures by Heyting and talks with his assistants and students. The most interesting activity in
logic was a short series of lectures by Leon Henkin, also there on a Fullbright as I remember, on
cylindrical algebras. Nevertheless, I had a profitable time in Amsterdam, beginning a serious
study of mathematics, which I continued when I returned to Yale. Logic in New Haven at
that time was represented by Fitch, whose main interest was in a variation of combinatorial
logic, which he called basic logic, and Alan Ross Anderson, who had been a fellow student in
Myhill’s class that first year but who returned after a few years as an assistant professor. I
very much admired Alan, but his interests were then primarily in modal logic and so remote,
or so I believed, from foundational issues. (In spite of suggestions about introducing modality
into mathematics, I still believe that.) I was working my way through Kleene’s Introduction
to Metamathematics, but entirely in isolation: I remember hours of confusion because I failed
to recognize that, e.g., of two upper case “A” ’s involved in the same argument, one was
italicized and the other not. (It is not a very humane book.) I also remember thinking for
most of a week that I had gone mad, because due to a misunderstanding of the statement of
Gentzen’s Hauptsatz, I thought I had a very elementary proof of the consistency of first-order
arithmetic. The philosophy department itself was at that time, I felt, in serious decline.1 My
discussions with Fitch about combinatorial logic/lambda calculus (we never talked about my
work) probably served me well: it became a staple for me in thinking about various problems
in proof theory. But on the whole, although I had many very bright fellow-students, I found
that the interests represented by the other members of the philosophical community there
were generally quite remote from mine.

I believe (but am not certain) that I remained in logic/philosophy and went on to obtain
a PhD in that field only because of the Summer School in Logic at Cornell in 1957, the first
I believe of its kind. Although philosophy remained (and remains) my main interest, my
experience in graduate school did not lead me to high expectations for life in a philosophy
department, and I had been drifting away from the subject. I stayed at Cornell for the first
five of the six-week program and left with my head spinning. At that time, journals in logic
were years behind the frontiers of the subject and, after the isolation of Yale, I had had no
idea of the riches I began to glimpse. I spent quite a bit of time, as I remember, speaking
with Anil Nerode, who wasn’t that much older than I, but light-years ahead of me in matters
logical. He was very encouraging and it was he who convinced me that some things I had
worked on, computable second-order functions and restricted forms of Turing reducibility for
them, might actually be of interest. (I never tested the conviction, however: It all went into
my dissertation, which I wrote in the summer of 1958 and, after defending it the following
autumn at Yale, never looked at again.) I also remember evenings listening to Paul Halmos
and Alfred Tarski, to both of whom I have remained grateful for the time that they spent with
students at Cornell that summer. It was there, too, that I was exposed, primarily through
Georg Kreisel’s lecture on Gödel’s Dialectica interpretation, to the possibility that there still
remained after Gödel’s incompleteness theorems a program of constructive interpretation of
classical mathematics—the possibility that my taste for logic could be comfortably united with
my feeling that philosophy is, after all, the serious matter.

It was pure coincidence that, a year later, I connected up with Kreisel at Stanford. My
interest in logic had been rekindled and back at Yale I was working my way through volume
2 of Hilbert and Bernay’s Grundlagen der Mathematik. The job offer from Stanford, probably

1 For some people, the decline began somewhat later, in the 1960’s: It probably depends
upon what their interests in philosophy were. There is, however, general agreement that there
was a serious and long-lasting period of decline beginning at least in the 1960’s, but also that
the process reversed and that the present department is quite strong.
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engineered by Alan Ross Anderson, was the second one I had in the academic year 1957-8
and, as I did the first, I was inclined to turn it down.2 I had never heard of Stanford (and
so of course had no idea that Kreisel was about to begin a part-time appointment there) and,
although graduate students of today will find this hard to believe, life as a graduate student
in those days was very pleasant: There was almost no tuition and, with a little bit of teaching,
one could live quite comfortably, studying the things one wanted to study, without the hassle
of a real job. But ARA began to get seriously angry with me—as did quite possibly my wife as
well—and so off we went. I have certainly never regretted it: Besides Kreisel, Sol Feferman,
whom I had met at Cornell, had arrived at Stanford the previous year; and through our logic
seminar and what was then a very close connection with the logic group at Berkeley, we had
through the years I was there (up to the summer of 1965) a rich assortment of logicians hanging
about at any time.

But the program of constructive foundations of classical mathematics did not in the end
fare so well. Spector’s extension of the Dialectica interpretation to second-order number theory
using bar recursion of higher types (1961) and Takeuti’s consistency proof for Π1

1 analysis (ap-
pearing in unpublished form around 1964) were the highpoints. But one could find no grounds
for accepting higher order bar recursion as constructive and Takeuti’s proof—essentially a
proof that cuts can be eliminated from deductions in Π1

1 − CA with the ω-rule—proceeds by
showing that a certain quite unintuitive system of ordinal notations is well-founded, the proof
of which can in no reasonable sense be termed constructive. My own program of attempting
to constructively interpret second-order number theory using the epsilon-substitution method
bit the dust in the winter of 1962-3. (In my defense, I wasn’t the only one naive enough to
think that such a result was obtainable: There wasn’t then the same clear sense we have now
of the limits of constructive methods as we then understood them.) I was at IAS in Princeton
at the time and one fallout of my discussions with Gödel about my failure was his suggestion
to me that one should consider what instances of second-order comprehension could be satis-
fied in a theory of inductively defined sets. I don’t know whether this was the source of the
initiation of studies of iterated inductive definitions at Stanford around that time; but it was
for me. For it was immediately clear that the classical theory of finite iterations of inductive
definitions of sets of numbers was sufficient to satisfy Π1

1−CA and almost as immediately clear
that a partial cut-elimination result for that theory with the ω-rule—the elimination of cuts
in deductions of purely arithmetic formulas—was provable in the constructive version of that
theory.3 In other words, it was possible to end-run around Takeuti’s argument: I doubt that I
was the only one to sigh in relief that one didn’t have to learn that awful argument. But alas,
as Harvey Friedman pointed out to me at the Buffalo Conference on Intuitionism and Proof
Theory in 1968, Π1

2 −CA is a barrier for iterated inductive definitions. The least ordinal α for
which the second-order version of Lα satisfies Π1

2 − CA is non-projectible.
For me, after thrashing around for a year or so, that was (until recent times) the end of

proof theory: It seemed impossible that constructivity as we understood it had the resources
for interpreting classical second-order number theory. In the light of work on Martin-Löf ’s
type theory and intuitionistic set theory, that judgment might have been premature. It is
also the case that proof theory survived as a purely mathematical theory. For example, the
techniques of proof theory may be used to extract information implicit in classical proofs—
an application of proof theory, called proof-mining, that was initiated by Kreisel in the early
1950’s and has been pursued in recent times by Kohlenbach and others. It is also the case

2 In those days, there wasn’t much formality—or evenhandedness— about hiring: If a de-
partment wanted to recruit, someone simply called up his favorite department and asked who
they had available. I had never previously met any of my new colleagues at Stanford in
philosophy nor had they, I believe, previously ever read a word that I had written.

3 My notes on this are in the form of copies of letters to Kreisel, dated in 1966. In fact, I
had noted that, further iterating inductive definitions, one could embed the rule of ∆1

2 compre-
hension. I lectured on these things at Rockefeller University in February 1967 and discussed
it fairly broadly through the summer of 1967.
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that Rathjen has recently extended Takeuti’s result by obtaining the proof-theoretic ordinal of
Π1

2−CA. But it still remains to be shown that proof theory has any remaining and redeeming
philosophical virtue.

Of course, constructive mathematics itself flourished: Perhaps the most important devel-
opment in that field was the publication of Errett Bishop’s Foundations of Constructive Analysis in
1967, although good work has continued to be done in Brouwer-style analysis. One reaction of
people who had worked in the program of constructive foundations for classical mathematics
to its failure was to feel “So much for classical mathematics!” and to thenceforth restrict
their attention to something less than the latter. I did not share that reaction: I appreci-
ate the attraction of constructive mathematics, but the game was (is) to understand classical
mathematics.

Abandoning proof theory was defining myself as primarily a philosopher. Even if one
felt driven by philosophical motives, Hilbert’s program, even in its extended form, gave
one something to do without philosophical reflection: Reduce mathematics based on the
axiomatic conception to mathematics based, if not on the conception of Kant, Kronecker
and Hilbert/Bernays, nevertheless on a reasonable extension of those ideas (allowing non-
algorithmic properties, but, if one proved the existence of an object with such a property, one
could extract an algorith for it). Its failure left for me an itch, but I didn’t know where to
scratch. I wanted to try to understand why we felt that something needed to be said or done
about the foundations of mathematics, and what it really was that needed to be done. So I
began, in the mid-1970’s, a study in philosophy of mathematics and, equally importantly, in
the history of the development of the central concepts of mathematics: number, function, and
set.

2. The Role of Mathematics in Philosophy

Aside from the negative business of letting the fly out of the fly-bottle, I think of philosophy
as being primarily foundational: it has no subject matter of its own, but rather refers to
a characteristic way of approaching the sciences—physical, biological, social, cognitive, and
mathematical—like Plato’s dialectician, seeking clarity and the first principles of each science.
Where works in philosophy appear to be advancing theories about language, the mind, or
whatever, I tend to see nascent science at best and bootleg science at worst.4

However, I don’t want to entirely downplay the freeing of flies, nor do I think that it is
entirely divorced from philosophy in its foundational role. For example, in the foundations
of mathematics itself, historical resistance to the actual infinite was based upon supposed
paradoxes, including in recent times the so-called ‘paradoxes of set theory’, which have all
been seen to be based upon confusion. Yet the resistance persists on other grounds. Thus,
the pursuit of the actual infinite leads us to speak of the existence of objects which are not
simply in themselves infinite, but also cannot even be effectively approximated by finite things.
There are those who not simply choose to pursue constructive mathematics, which avoids such
objects, but argue that speaking of them is meaningless or wrong. There are others, in this
case, perhaps, more often philosophers quite removed from mathematics itself, who advocate
some form of nominalism, on the grounds that, no matter how internally coherent mathematics
might be, it speaks of ‘abstract objects’, and these simply don’t exist. In both cases, I believe,
there are captive flies buzzing around. Most of my own non-technical publications have been
of the freeing-of-the-flies variety, perhaps the most notable example being “Proof and truth:
the ‘Platonism’ of mathematics”. But what I want to point out here is that this enterprise is
not totally unconnected to the foundational enterprise. Many of those who have been involved
in the development of set theory, itself, for example, have been afflicted with ‘philosophical’
doubts about the existence of sets—Tarski’s well-known ‘finitism’ being a case in point. Freeing

4 Of course I am excluding here the many instances of philosophers who publish work that
they quite frankly see as having scientific content in the usual sense, subject to the usual
critical standard.
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the internal problems of foundations from these external and groundless concerns is surely part
of the foundational role of philosophy.

I do not see that mathematics itself plays any role in this more therapeutic kind of phi-
losophy. So the question of the use of mathematics in philosophy can only be, for me, the
question of its use in foundations of science. The idea of ‘mathematizing’ a science, of creating
mathematical theories which idealize the phenomena in question—that is, in terms of which
we can understand and reason about these phenomena and control them, goes back at least as
far as Plato. In near contemporary times its great exponent was Hilbert, and the ubiquity of
titles in the last century and earlier of the form “The mathematical foundations of . . .” attests
to the success of this approach to foundations of science.

Because of a primarily foundationalist conception of philosophy, I include in the field
much more (and much less) than the twentieth century division of the disciplines allows for.
In particular, many works on foundations of mathematics, that are generally counted only as
mathematics—unless they are very old—I think of as philosophy and hence as instances of the
‘use of mathematics for philosophy’. A few examples: Riemann’s “On the hypotheses which
underlie geometry”, Dedekind’s “Continuity and irrational numbers” and “The nature and
significance of numbers”, Hilbert’s Foundations of Geometry, Cantor’s theory of transfinite num-
bers in Foundations of a General Theory of Manifolds: A Mathmatico-Philosophical Investigation into the
Theory of the Infinite, Frege’s analysis of quantification in his Begriffsschrift, the whole nineteenth
century movement in the foundations of function theory and search for the proper definition of
the integral, culminating in Lebegue’s “On a generalization of the definite integral”, the works
of Zermelo, von Neumann and Gödel on foundations of set theory—as well as much of the con-
temporary work in this area. The analysis of computability in the works of Turing and others
belongs in this list. And of course, if we move to the foundations of other sciences—physics,
biology, economics, etc., a whole class of other examples come to mind.

Of my own work, perhaps the paper “Finitism” may be regarded as an application of
mathematics to philosophy, in that it attempts to give an analysis of a particular conception
of mathematics in terms of the formal system of primitive recursive arithmetic. Indeed, I
begin to believe that, independently of whatever version of Kantianism Hilbert and Bernays
were drawing on in their conception of finitism, primitive recursive arithmetic is the genuine
heir of Kant’s conception of mathematics—indeed, of a pre-nineteenth century constructivist
conception to which Kant gave voice. (My view of Kant in this respect is heavily influenced
by Michael Friedman’s work on Kant’s philosophy of mathematics.) My work in proof theory
in the 1960’s and early 1970’s was in aid of a philosophic program; but, whatever intrinsic
value that work has, the philosophic program failed. Moreover, the program presupposed
a radical difference between constructive mathematics and classical mathematics, the former
based on an idea of construction, the latter based upon an idealized domain which we access by
axiomatically describing it. As a result of subsequent philosophical reflection (of the freeing-of-
the-flies variety), I no longer believe that: I don’t see constructive mathematics as based on a
different conception of mathematics but as, basically, a subdomain of classical mathematics. I
first discussed this in a (badly written) paper “Against intuitionism: Constructive mathematics
is part of classical mathematics.” A further discussion is in the introduction to a collection of
my philosophical essays, The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and
its History.

3. The Proper Role of Philosophy of Mathematics in relation to Logic, Foundations of Math-
ematics, Mathematics, and Science

In its positive, foundationalist, guise, the proper role of philosophy and, specifically, phi-
losophy of mathematics in foundations of mathematics, mathematics and science is obvious.
Much of the work in philosophy of mathematics of the last century was concerned with foun-
dations in this sense; and indeed, it continues to this day.

Some of it, in the logicist program and Hilbert’s program (and its extension) in particular,
was concerned to give a foundation for all of classical mathematics. The logicist program in
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the sense of Frege, of reducing mathematics to logic, was of course doomed to failure. In the
sense of Dedekind, however, in which the aim was to eliminate intuition and replace it by
logical analysis, it led to the modern conception of mathematics as based on the axiomatic
method. This in fact set the stage for Hilbert’s program: To prove the axioms consistent
or, in the case of the extended program, to interpret the theorems of classical mathematics
as theorems of constructive mathematics. The failure of this program was not so immediate.
It should be mentioned, too, that its failure is not the failure of the axiomatic conception of
mathematics—and that is fortunate, since it is the only viable conception we have. Rather,
the significance of Gödel’s second incompleteness theorem is that it is a fact of mathematical
life that we are forever at risk of encountering a contradiction.

Incompleteness, on the other hand, is the engine driving contemporary foundations of
classical mathematics, i.e. philosophy of mathematics in the positive sense, although the work
done in this area is quite technical and is not philosophy as the term is usually used: There
are many questions that the axioms of ZFC do not suffice to settle and so one is led to believe
that the axioms do not sufficiently express the conception of a universe of sets obtained by
iterating the powerset operation and, following the suggestion of Gödel, one would like to find
axioms expressing even higher iterations of this operation that will lead to the solution of open
problems in everyday mathematics. The discovery that certain of these large cardinal axioms
yield the solution of problems in descriptive set theory, such as whether all projective sets are
Lebesgue measurable and whether they have the property of Baire, has been one great success
in this direction and leads to the hope that further axioms expressing even higher iterations
of powerset will lead to solutions of, say, the Continuum Problem.

But there were and are, too, revisionary programs aimed at restricting the scope of math-
ematical reasoning. One example is the predicativism developed by Weyl and, later, Feferman.
Another is the strict finitism of Kronecker, in which the objects of mathematics are restricted
to those representable by whole numbers and whose concepts are restricted to those equipped
with algorithms for determining which objects fall under them—the position that Hilbert
adopted as the methodological stance upon which to prove the consistency of axiomatic math-
ematics, and the more liberal constructivism of Brouwer, of Weyl, and, later, of Bishop. Of
course, both predicative and constructive mathematics can be pursued as interesting domains
of investigation in their own right—subdomains of classical mathematics; but I am referring
here to a stance according to which we ought to adopt a more restrictive kind of mathematics.
The arguments for this have been various: For example, in the early part of the last century,
such as in the writings of Weyl, they were often based on the so-called ‘paradoxes of set the-
ory’. Brouwer also referred to these ‘paradoxes’ in his polemic against classical mathematics;
but his more positive argument (and one would suppose this to be so of Kronecker, too, if
he had chosen to write more on the subject) appealed to an earlier tradition in which, at
least if one sufficiently hid epsilon-delta arguments behind infinitesimals, one could believe
in the picture of mathematics presented by Kant, that all of mathematics consists essentially
of construction according to rules. In more recent times there has been Michael Dummett’s
argument for constructive mathematics based upon a theory of meaning. Also, in philosophy
of mathematics itself, largely in isolation from the actual practice of mathematics, general and
a priori views on ontology—about the existence of what some writers call ‘abstract objects’—
have led to the charge that mathematics or at least some parts of it are meaningless or false
and/or to the view that at least a part of it can be understood only as a formalism.

My own non-technical papers in philosophy of mathematics, other than some of them of
primarily historical content, are philosophical in the negative sense: Their primary aim has
been to disarm the arguments behind these revisionary programs. In one direction, I have
attempted to counter the idea that constructive mathematics is a different subject from clas-
sical mathematics and have argued that one can understand constructive mathematics as a
subdomain of classical mathematics. In several papers and in my collection of essays The Prove-
nance of Pure Reason: Essays in the Philosophy of Mathematics and Its History, I pointed out that the
conception of meaning that Dummett believes to support intuitionistic mathematics is equally
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compatible with the classical conception and that the apparent constructive refutations of
classical theorems often referred to are in fact simply a matter of changing the meanings of
words—that with a certain disambiguation, the ‘counterexamples’ are classically valid, too. In
another direction, I have attempted to show that the qualms about the existence of ‘abstract
objects’ that have led some philosophers and mathematicians to reject or at least to question
parts of mathematics are based upon an illusion that there is some univocal notion of existence
on the grounds of which we can legitimately argue for or against the existence of mathematical
(or physical or mental) objects. This is a lesson that I learned from Wittgenstein’s ıPhilosoph-
ical Investigations, although, paradoxically, his own views about mathematics were so out of
sync with the actual mathematics of his time that he failed to apply his own lesson. Finally, by
arguing, again following a line of thought I believe to be in Wittgenstein’s Investigations, that
Hilbert’s conception that the (categorical) axioms define the mathematical structure—that
the objects of the structure are, so to speak, constituted in the axiom system—is not entirely
different from the sense in which the objects of our daily life are constituted in the language
in which we speak and think about them, I have attempted to disarm the charge of formalism
that has been leveled against the axiomatic conception of mathematics.

4. Late 20th century philosophy of mathematics

It is disappointing to me, now in the twenty-first century, that so many of the ghosts that
haunted philosophical discussions of mathematics at the beginning of the twentieth century
are still with us. At the beginning of that century, the concepts of set and (in our sense)
function and, generally, the explicit acceptance of the actual infinite (in the sense, not of there
being infinitely many things—a potential infinity, but of there being infinite things) were still
relatively new in mathematics: A new language had to be learned and old misconceptions
and fallacious ‘paradoxes’ had to be exposed. True, the latter had already been done in
Bolzano’s ıParadoxes of the Infinite and in Cantor’s Foundations of a General Theory of Manifolds:
A Mathmatico-Philosophical Investigation into the Theory of the Infinite, but the latter of these was of
relatively recent vintage (1883) and apparently not much read by philosophers and Bolzano’s
work, because of, ultimately, an inadequate notion of a set, failed to lay to rest the ancient
‘paradox’ concerning ‘unequal infinities’, i.e. sets of the same size as one of their proper
subsets, and well as those problems that arose from failing to distinguish between what we
would call structures and their underlying sets.

Of course, the appearance of the new ‘paradoxes of set theory’ contributed to the sense
that the new language might turn out to be incoherent; but a conception of set theory having
as its models a potential infinity of universes of sets (where each universe appears as a set in
another one and there are no absolute ‘proper classes’) and which is not in the least subject
to these paradoxes has been in existence since Zermelo’s 1930 paper.

Resistance to accepting the new language has alas been reinforced by superstition concern-
ing the issue of “what there is,” where this is taken to be, not an issue internal to the language
or theory in which the objects are purported to make their appearance, but an external ques-
tion concerning the legitimacy of the theory itself. In United States and England, at least, the
hegemony of W.V. Quine among philosophers on the subject of mathematics through much
of the last half of the century had a lot to do with this resistance. I’m referring here not only
to his unwarranted “common sense is bankrupt” point of view concerning set theory, but also
his views about ontology. His slogan,“To be is to be the value of a bound variable,” turned
out to be a criterion for ontological commitment of theory, one which mathematics might fail
to satisfy, rather than a banishment of the issue of ontological commitment to mathematical
objects (sets, functions, numbers, etc.) from consideration entirely, as it might and should
have been. The misfortune was compounded by Quine’s view of the role of mathematics in
natural science. As opposed to the view that Euclidean geometry, arithmetic, and set theory
concern their own ideal domains, Euclidean space, the system of natural numbers, and suitable
universes of sets, respectively, independently of any possible applications that they might have in our
theories about the natural world, Quine took the position that mathematics has no autonomous
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status and that its validity rests holistically with its role in natural science. This view, too,
framed many of the topics of discussion in the last part of the century, which were, therefore,
far from any involvement with real issues concerning mathematics.

The same lack of involvement may be ascribed to the contemporary neo-logicism. When
it is considered, not as a possibly interesting—though surely quite limited—investigation in
its own right, but as an alternative to mathematics as it is being practiced, one is moved to
ask: Why? The motivation for it as a better alternative for doing arithmetic and analysis
seems based upon the same monochromatic conception of existence as Quine’s. (In fact, it
goes back through Frege to Kant and ultimately to Aristotle, and is opposed to the tradition,
going back through Leibniz to Plato and forward through Dedekind and Cantor to Hilbert,
according to which mathematics concerns ideal domains.) Frege, realizing that the demands of
mathematics in his time required that whole numbers be regarded as objects, needed to make
a correction in Kant’s philosophy, one that would admit numbers into the same universe that
Kant had wanted to restrict to things representable in sensible intuition. The neo-logicists
seem committed to the same view: whole numbers and real numbers, say, are part of the same
universe as physical objects, arising out of equivalence classes of concepts that are meaningful
for all objects—so that, for them too, it makes sense to ask whether Julius Caesar is a number!
The difference being that, instead of Frege’s inconsistent assumption that arbitrary extensions
of concepts belong to the universe, they make the more modest assumption that this is so
(essentially) of suitable equivalence classes. As a philosophical stance, it seems sterile; as for
the development of the theory itself, it lacks the kind of connection with actual mathematics
that constructive mathematics has, for example, as a style of proof in which existence proofs
yield algorithms.

In speaking about philosophy of mathematics in the late twentieth century, one certainly
needs to mention the influence of Gödel. Aside from his technical work, his 1948 paper
“What is Cantor’s continuum problem” along with the supplement of 1964 have been quite
influential both in foundational work in set theory and, alas, in muddying the waters over the
issue of ‘what there is’ with his subscriptions to ‘Platonism’. In the former respect, I have
already mentioned that his view that the pursuit of large cardinal axioms might lead to the
solution of mathematical problems has served as motivation for research in set theory and,
indeed, has born fruit—although not with respect to the problem at issue in that paper. The
publication of his collected works has led to fairly intense discussion of his philosophical views
in recent times; and having contributed rather more substantially to that discussion than I
ever intended, perhaps I can beg off discussing it further here. One matter though that I
would like to mention is his interest in Husserl’s phenomenology, which he began to study, it
seems, in the late 1950’s. I don’t know how much more there is to be found out about it in
the Gödel archives; but it has attracted considerable attention among phenomenologists and
it will be interesting to see what might develop from it.

5. The most important open problems in the philosophy of mathematics and the prospects
for progress?

For me, the most important open problem in philosophy of mathematics is in foundations
of mathematics, and that is the search for new axioms of set theory—which means, too, the
search for grounds for accepting them. There are many interesting directions of development
in logic, but in philosophy of mathematics, I believe that this is the overwhelmingly most
important problem. But it is a problem now largely in the hands of set theorists. Maybe
one important open problem for those of us who are primarily philosophers is that of gaining
access to that problem.
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